Security Analysis of Serverless
Functions

sdmay24-26 (Dillon H, Cameron H, Michael G, Samuel P, Trent W)
Client and Advisor: Dr. Berk Gulmezoglu

Background

e What is a serverless

Lambda function

function? AWS Lambda Moralis

. What are Some use Cases T Proxy API calls

Get metadata and
assets (image, videos, etc) Amazon Alchemy

for Serverless Functions? S

Get SPA
Browser Amazon Amazon S3
CloudFront

Authenticate
Get message to sign & Get credentials
Sign message

Amazon
Cognito

UserPool
Generate message &

Validate signature

Generated message

AWS Lambda

Figure 1. Architecture diagram showing authentication and API request proxy solution for Web3

Background

* How do Serverless Functions work
« Code Deployment
- Event Trigger
« Resource Allocation
- Code Execution
- Response
« Resource Deallocation

* Why are these functions advantageous?

« Cost efficient

- Scalability

- Developer Productivity
- Reduced Overhead

How do Serverless Functions work?

E»‘v’»!

‘! . \

Develop code. Configure Code runs only Pay for code
Push function image function trigger when triggered execution time
to registry only

https://developer.oracle.com/learn/technical-articles/serverless-functions

Project Requirements

e Functional

o Documentation, vulnerabilities

® Resources

o Server, environment setup, Lambdas
e Legal requirements
e Performance

o Memory, processing, minimum output constraints
e Maintainability
e Testing requirements

o Environment should mimic AWS as much as possible
o Consistency of attack code output

0 Firecracker

Project Design - Backend

Automated Lambda Creation
Provide additional AWS services
Routing of function requests

TRLRREREREREREERErErrnennigs.e

27 CUELELEREREERETEREerrenitiizee

3 0[
[

[
6 [
[

8 [
39 [
40 [
11
[

[
44 [
[

6 [
[

8 [

Dynamic Networking
Changeable MicroVM settings
Uses firecracker for quick VM startup

|
ven[e

Automated enumeration of lambda functions
Dynamically builds runtime image

Starting and stopping MicroVMs from an API

AWS Replicated Cloud

Project Design - Frontend v e, o
“ access shared Code
cache Cus_tomer
Cache results graphe aLcanrﬁ)E::
for viability
e Jambda
0 Attack COde Firecracker : tf\a?kvi:)% :
o “Customer” functions
e Data collection and transfer S ek e .
. . stored in bucket. A?Sﬁ';ﬁo\(,j:ﬁ =
e Graphing - troubleshooting TR

o Helped identify viable data to be used in a machine learning model

e Jssues faced
o Multiple languages with different timing mechanisms
o Customer cache footprinting
m Running Lambda functions on the same cores/CPU

Results - Testbench

Initial Testing Phase

Memory Access Time (Milliseconds)

e Attack code viability
e Useful imprint on cache
e Repeatable

Attack Code as Lambda

e Similar results
e Still using testbench directly

Running Attack Code on Server Directly

Lambda Imprint on Cache using Memory Access Time

—— Lambda Run 1
~——— Lambda Run 2

1800 1900 2000 2100
Sample Iteration (5 Millisecond intervals)

Running Attack Code as a Lambda

Results - Webserver

Attack Code and a Lambda

Balance between number of cores

and lmpnnt Lambda Imprint on Cache using Memory Access Time
Finding similarities — Lambda Run1
~——— Lambda Run 2

—— Lambda Run 3

Finding viable candidates for
lambda

Identifiable?
Clear Start and Stop?
Same Scale?

s
o
[~
[e]
(o)
7]
Ro]
:
()
£
’_
w
"
(]
v
v
<
()
[e]
£
7]
=

1250 1500 1750 2000
Sample Iteration (5 Millisecond intervals)

Subsequent Actions

e 'Train and test a ML model for classification of functions
e Testing attack code in real environment (AWS)
e Investigation into minimal viable capture amount

o How many cores produce viable data?

e Expand interpreted languages used

Conclusion / Demo

10

