
Security Analysis of Serverless 
Functions

sdmay24-26 (Dillon H, Cameron H, Michael G, Samuel P, Trent W)
Client and Advisor: Dr. Berk Gulmezoglu

1



Background
● What is a serverless 

function?
● What are some use cases 

for Serverless Functions?

2
https://aws.amazon.com/blogs/architecture/dapp-authentication-with-amazon-cognito-and-web3-proxy-wit
h-amazon-api-gateway/



Background
• How do Serverless Functions work

• Code Deployment
• Event Trigger
• Resource Allocation
• Code Execution
• Response
• Resource Deallocation

• Why are these functions advantageous?
• Cost efficient 
• Scalability
• Developer Productivity
• Reduced Overhead

3

https://developer.oracle.com/learn/technical-articles/serverless-functions



Project Requirements
● Functional

○ Documentation, vulnerabilities
● Resources

○ Server, environment setup, Lambdas
● Legal requirements
● Performance

○ Memory, processing, minimum output constraints
● Maintainability
● Testing requirements

○ Environment should mimic AWS as much as possible
○ Consistency of attack code output

4



Project Design - Backend
● Automated Lambda Creation
● Provide additional AWS services
● Routing of function requests
● Dynamic Networking
● Changeable MicroVM settings
● Uses firecracker for quick VM startup
● Automated enumeration of lambda functions
● Dynamically builds runtime image
● Starting and stopping MicroVMs from an API

5



Project Design - Frontend
● Lambda

○ Attack code
○ “Customer” functions

● Data collection and transfer
● Graphing - troubleshooting

○ Helped identify viable data to be used in a machine learning model
● Issues faced

○ Multiple languages with different timing mechanisms
○ Customer cache footprinting

■ Running Lambda functions on the same cores/CPU

6



Results - Testbench
Initial Testing Phase

● Attack code viability
● Useful imprint on cache
● Repeatable

Attack Code as Lambda

● Similar results
● Still using testbench directly

7

Running Attack Code on Server Directly

Running Attack Code as a Lambda



Results - Webserver
Attack Code and a Lambda

● Balance between number of cores 
and imprint 

● Finding similarities 
● Finding viable candidates for 

lambda
● Identifiable? 
● Clear Start and Stop? 
● Same Scale?

8



Subsequent Actions
● Train and test a ML model for classification of functions
● Testing attack code in real environment (AWS)
● Investigation into minimal viable capture amount

○ How many cores produce viable data?
● Expand interpreted languages used

9



Conclusion / Demo

10


